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Abstract The uncertainty required by laboratories and industry for temperature
measurements based on the practical use of platinum resistance thermometers (PRTs)
can commonly be achieved by calibration using temperature reference conditions and
comparison methodologies (TCM) instead of the more accurate primary fixed-point
(ITS-90) method. TCM is suitable for establishing internal traceability chains, such as
connecting reference standards to transfer and working standards. The data resulting
from the calibration method can be treated in a similar way to that prescribed for
the ITS-90 interpolation procedure, to determine the calibration coefficients. When
applying this approach, two major tasks are performed: (i) the evaluation of the
uncertainty associated with the estimate of temperature (a requirement shared by the
ITS-90 method), based on knowledge of the uncertainties associated with the temper-
ature fixed points and the measured electrical resistances, and (ii) the validation of
this practical comparison considering that the reference data are obtained using the
ITS-90 method. The conventional approach, using the GUM uncertainty framework,
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requires approximations with unavoidable loss of accuracy and might not provide ade-
quate uncertainty evaluation for the methods mentioned, because the conditions for its
valid use, such as the near-linearity of the mathematical model relating temperature
to electrical resistance, and the near-normality of the measurand (temperature), might
not apply. Moreover, there can be some difficulty in applying the GUM uncertainty
framework relating to the formation of sensitivity coefficients through partial deriva-
tives for a model that, as here, is somewhat complicated and not readily expressible in
an explicit form. Alternatively, uncertainty evaluation can be carried out by a Monte
Carlo method (MCM), a numerical implementation of the propagation of distributions
that is free from such conditions and straightforward to apply. In this paper, (a) the use
of MCM to evaluate uncertainties relating to the ITS-90 interpolation procedure, and
(b) a validation procedure to perform in-house calibration of PRTs by comparison are
discussed. An example illustrating (a) and (b) is presented.

Keywords Monte Carlo method · Platinum resistance thermometer calibration ·
Uncertainty evaluation

1 Introduction, Objectives, and Main Contributions

Platinum resistance thermometers (PRTs) are among the most common measuring
instruments used in thermometry, and are applied in primary laboratories, calibra-
tion and testing laboratories, and industrial laboratories, for each of which different
measurement uncertainties generally apply.

The International Temperature Scale of 1990 (ITS-90) [1] describes a procedure
for the calibration of PRTs based on measurements at defining fixed points. The use of
this procedure provides very small temperature uncertainties, but requires expensive
metrological infrastructures that are generally inappropriate for testing and industrial
laboratories. Instead, it is common practice to calibrate reference standards in primary
laboratories according to the ITS-90 definition, and to perform in-house calibrations
of transfer and working standards using temperature comparison methodologies.

There are two major issues associated with this practice: (i) the need to evaluate
measurement uncertainties in a context where the GUM (Guide to the Expression of
Uncertainty in Measurement) uncertainty framework [2] might not always be appro-
priate or might be difficult to apply, and (ii) the validation of the TCM approach.

The aims of this study were (a) to validate an instance of the TCM approach in
comparison with the fixed-point methodology, (b) to use the Monte Carlo Method
(MCM) to obtain measurement uncertainties reliably and straightforwardly, and (c) to
apply the whole process to an actual calibration to check the fulfillment of metrological
requirements.

The case study reported here concerns the calibration of PRTs in the range from
0◦C to the freezing point of tin (231.928◦C).

2 Brief Description of the Two Calibration Methods

The ITS-90 specifies procedures to calibrate PRTs in several temperature intervals
and, in particular, in the interval for this study, 0–231.928◦C. In these procedures,
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calibration is carried out (a) at specified sets of defining fixed points in terms of the
ratio of the resistance R(T90) at temperature T90 and the resistance R(273.16 K) at the
triple point of water, namely (using T rather than T90),

W (T ) = R(T )

R(273.16 K)
, (1)

and (b) using specified reference and deviation functions for interpolation at interme-
diate temperatures. For the temperature interval of this study, according to ITS-90 [1]
the thermometer is calibrated at the triple point of water (t0 = 0.01◦C), and at the
freezing points of indium (t1 = 156.5985◦C) and tin (t2 = 231.928◦C), using the
deviation function given by

W (T ) − Wr(T ) = a[W (T ) − 1] + b[W (T ) − 1]2, (2)

with the values of a and b obtained by measurement at the defining fixed points.1 In
Eq. 2, Wr(T ) represents the reference function given by

Wr (t) = C0 +
9∑

i=1

Ci

[
(t − 481)

481

]i

, (3)

with the C0 and Ci constants given in the text of ITS-90 [1].
Values for a and b are determined by solving the pair of linear algebraic equations

given by Eq. 2 using the measured values of W (T ) for T = T1 and T = T2, forming
the corresponding values of Wr(T ) using Eq. 3.

Following the calibration of a PRT as above, the temperature corresponding to a
resistance ratio Wr(T ) subsequently measured using the PRT is determined by the in-
verse use of Eq. 3. This use is facilitated by the provision of the explicit approximation,

t = D0 +
9∑

i=1

Di

[
Wr(t) − 2.64

1.64

]i

, (4)

equivalent to Eq. 3 within 0.13 mK, where again the Di ’s are provided constants [1].
TCM uses the same formulation as the ITS-90 procedure, being different only in

(a) the definition of the temperature reference condition, thermometric baths being
used, and (b) the use of reference PRTs to obtain the reference-temperature values
rather than the fixed-point reference temperatures. The measurement uncertainties so
obtained are, naturally, greater than for the ITS-90 procedure.

In summary, the steps in the evaluation are as follows:
Calibration mode

1. Measure electrical resistance R0, R1, R2 at reference temperatures T0, T1, T2,
respectively;

1 The notation used is that each temperature expressed in lower case (say t0) is in ◦C and has a corresponding
temperature expressed in the corresponding upper case (that is, T0) in K.
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2. Form the resistance ratios W1 = R1/R0, W2 = R2/R0;
3. Use Eq. 3 to evaluate Wr(T1) and Wr(T2);
4. Solve the pair of equations Wi − Wr(Ti ) = a(Wi − 1) + b(Wi − −1)2, i = 1, 2

for a and b.

Calibrated measurement mode

5. Measure electrical resistance R at the unknown temperature T ;
6. Form the resistance ratio W = R/R0 (possibly using a new measured value for

R0);
7. Form the reference resistance ratio Wr = W − a(W − 1) − b(W − 1)2;
8. Use the inverse function, Eq. 4, to obtain the required temperature T .

This evaluation procedure can straightforwardly be applied using the nominal val-
ues for T0, T1, T2 in step 1, and the measured values for the electrical resistances
R0, R1, R2, delivering the required estimate T̂ , say, of the unknown temperature T
in step 8. The procedure can also be followed in terms of applying the GUM uncer-
tainty framework: given standard uncertainties associated with the nominal values for
T0, T1, T2 and the measured values of R0, R1, R2 (and, if appropriate, covariances
associated with pairs of these values), (i) the standard uncertainty associated with T̂
can be evaluated and (ii) an expanded uncertainty U related to T̂ can be formed. In
(i), the law of propagation of uncertainty would be applied, and in (ii), T would be
characterized by a Gaussian distribution to deduce U .

The hardest part of the uncertainty evaluation relates to step 4, in which a and b are
obtained by solving a pair of equations. White and Saunders [3] provide an elegant
approach. Meyer and Ripple [4] derive equations for the uncertainty evaluation based
on the application of the GUM uncertainty framework. In doing so, they take account
of further influencing factors. Also, see Lira et al. [5].

3 Discussion of the Use of the GUM Uncertainty Framework
and a Monte Carlo Method

Although the GUM uncertainty framework is commonly applied to evaluate measure-
ment uncertainty, other approaches are increasingly used, especially a Monte Carlo
method that implements the propagation of distributions [6]. In this section, we discuss
the relative merits of using that framework and MCM for the problem investigated
in this work. Both approaches use a functional model relating the input quantities
(fixed-point temperatures T0, T1, T2 and electrical resistances R0, R1, R2, R) to a
single (scalar) output quantity T . Moreover, both approaches consider that the input
quantities are characterized by probability density functions (PDFs) obtained from
knowledge of these quantities. The GUM uncertainty framework utilizes only sum-
mary parameters of those PDFs (expectations and standard deviations), whereas MCM
uses the PDFs themselves. Furthermore, the GUM uncertainty framework character-
izes the output quantity by a Gaussian PDF (or a scaled and shifted t-distribution),
whereas MCM derives the PDF for the output quantity, whatever its form.

Moreover, the proposed solutions found in related research studies apply the con-
ventional GUM uncertainty framework using Gaussian approximations [4,7,8],
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implementing differential calculus and procedures to handle correlation (e.g., result-
ing from the ratios in calibration and in measurement using the same reference value
of R0) [9].

There are several intermediate quantities in the above evaluation procedure, the
coefficients a and b being particularly important: they describe the calibration of the
PRT.

There are some topics meriting discussion in the approach to this problem, espe-
cially when using the GUM uncertainty framework:

1. Whether to work with a single model of evaluation, namely, T in terms of T0, T1,
T2, R0, R1, R2, and R, or a pair of such models: (i) a and b in terms of T0, T1,
T2, R0, R1, and R2, and (ii) T in terms of a, b, R0, and R. It is arguably more
reasonable to consider a pair of models, since they correspond to the two distinct
stages: PRT calibration and use of the calibrated PRT;

2. The influence of model non-linearity, regarding the provision of an estimate of
T , and the evaluation of the corresponding standard and expanded uncertain-
ties. The difficulty of determining the partial derivatives required is one relevant
consideration.

In the problem considered, the electrical resistance is regarded as having a Gaussian
PDF. However, resistance ratios are used, which would then have non-Gaussian PDFs,
as would the quantities (coefficients and temperatures) subsequently obtained from
them. In fact, six of the above steps involve non-linear operations, all contributing to
possible departures from normality. The GUM mainly considers the use of models
that are linear or mildly non-linear, for which first-order partial derivatives must be
evaluated, but states (clause 5.1.2) that higher-order derivatives must be used when
non-linearity is significant. MCM makes no assumption regarding the output PDF
and, therefore, does not impose any particular limitation related to input or output
PDFs (only the ability to make random draws from the input PDFs). It combines them
according to the mathematical model used, no judgment being required concerning
whether contributions are significant. (The partial derivatives of first order within the
GUM uncertainty framework provide valuable sensitivity coefficients. It is possible
to implement a numerical procedure to provide information constituting a non-linear
counterpart of a sensitivity coefficient [10]).

For the second stage of the two-stage approach, the GUM uncertainty framework
requires the covariance associated with the estimates of the two coefficients. MCM
deals with this aspect straightforwardly, since such covariance effects are readily han-
dled (Sect. 5).

A further point of comparison concerns the uncertainty related to the estimate of
T . In the approach used in the GUM uncertainty framework, an approximate solu-
tion is unavoidable, as a consequence of the model non-linearity. The extent of that
approximation is very difficult to assess, emphasizing the advantage of MCM.

4 Uncertainty Evaluation Method and Experimental Data

The uncertainty evaluation is applied to a sequence of models (chain of functions)
presented in the following steps and illustrated diagrammatically in Figs. 1 and 2.
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W1 = f1(R0(T0), R1(T1)) W2 = f2(R0(T0), R2(T2))

Wr(T1) = f3(T) Wr(T2) = f4(T)

(a, b)T = f5(W1, W2, Wr(T1), Wr(T2))

W = f6(R0(T0), R(T))

Wr(T) = f7(a, b, W)

Step 2 : 

Step 3 : 

Step 4 : 

Step 6 : 

Step 7 : 

Step 8 : T = f8(Wr(T))

Fig. 1 Chain of functions related with calibration and evaluation of temperature

Wr(T2)T2, R2

T0, R0

T1, R1 f1 W1

f2 W2

f3 Wr(T1)

f4

f5

a

R
Wf6

f7 Wr(T) f8 Tb

a

b

Calibration stage Calibrated measurement stage 

T0, R0

Fig. 2 Chain of functions. Single-stage process: taking the input quantities T0, T1, T2, R0, R1, R2, R to the
output quantity T . Two-stage process: taking the input quantities T0, T1, T2, R0, R1, R2 to the intermediate
quantities a and b, and thence a and b, with T0, R and R0, to the output quantity T

The conventional approach considers a two-stage model. The input quantities in the
first stage are T0, T1, T2, R0, R1, and R2, and the output quantities a and b. The input
quantities in the second stage are a, b, T0, R0, and R, and the output quantity T . The
alternative is a single model, with input quantities T0, T1, T2, R0, R1, R2, and R, and
output quantity T . A function with form inferred from the above is denoted by f j .

With step numbers related to the sequence introduced in Sect. 2, the functions in
the chain are as follows:

By applying the chain rule of differential calculus to the sequence of functions
constituting the single model, the partial derivatives of T with respect to T0, T1, T2,
R0, R1, R2, and R can be determined, and the standard uncertainty associated with
the estimate T̂ of T evaluated given the standard uncertainties (and covariances where
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appropriate) associated with the fixed points T0, T1, T2 and the measured values of
R0, R1, R2, and R.

For the two-stage model, at the end of the first stage there will be an uncertainty
matrix (covariance matrix) cov, say, associated with the estimates â and b̂ of the ele-
ments of the vector (a, b)T , containing as diagonal elements the squares of the standard
uncertainties associated with â and b̂ and in the off-diagonal positions the covariance
associated with â and b̂. The standard uncertainties associated with the estimates of
R and R0, together with cov, are used in the second stage to provide the standard
uncertainty associated with T̂ .

It is emphasized that cov is not needed when the single model is used, since (implic-
itly, or explicitly, but clumsily) T can be expressed functionally in terms of T0, T1, T2,
R0, R1, R2, and R.

A difficulty is the evaluation of the standard uncertainties associated with the esti-
mates of the coefficients a and b in Eq. 2. These uncertainties are required in the
evaluation of the uncertainty associated with T̂ provided by the calibrated PRT. The
difficulty arises because of the complicated way in which T depends on a and b and,
in turn, the way in which a and b depend on the fixed points and on the electrical
resistances measured at the calibration stage. In this work, the two-stage model was
considered since it corresponds better with practice, but the additional difficulty cre-
ated by the need to know the covariance associated with estimates of a and b should
be taken into account in deciding which approach to adopt. An appraisal of both
approaches will be attempted in future studies.

It is emphasized that U is not needed when the single-stage model is used, since
(implicitly, and explicitly, but clumsily) T can be expressed functionally in terms of
R0, R1, R2, and R.

Now we will describe how MCM can be used for the problem addressed. Like
the GUM uncertainty framework, MCM operates with a mathematical model relat-
ing an output quantity to a set of input quantities [11]. The input quantities are fixed
points and electrical resistances, and the output quantity the required temperature T .
MCM propagates a large number of random draws from distributions characterizing
the input quantities through the mathematical model to provide random draws from
the distribution for T . This procedure avoids the mentioned limitations of the GUM
uncertainty framework. A best estimate of T , the associated standard uncertainty, and
a coverage interval for a prescribed coverage probability can then readily be obtained
from the distribution for T constructed from the large number of draws characterizing
the distribution.

The use of MCM requires a validated pseudo-random uniform number generator,
transformation algorithms to convert uniform random sequences into other sequences
with given PDFs (for example, the Box–Muller transformation [12] converts uniform
random sequences into sequences with Gaussian PDFs), and algorithms to order the
sequence, and to assess the numerical precision of the results obtained [10]. This last
aspect can be handled using an adaptive Monte Carlo procedure that automatically
determines the number of draws that would be required to deliver a specified numerical
precision.
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Table 1 NMI calibration data (Serial Number 25286/3)

Id. Fixed-point Standard Measured Standard
temperature (◦C) uncertainty (◦C) resistance (�) uncertainty (�)

TS1 0.0100 0.0050 99.9976 0.00010
TS2 29.7646 0.0050 111.5831 0.00011
TS3 231.9250 0.0075 187.5670 0.00019

Table 2 In-house TCM calibration data

Id. Reference Standard Measured Standard
temperature (◦C) uncertainty (◦C) resistance (�) uncertainty (�)

TM1 0.010 0.007 99.997 0.00010
TM2 29.771 0.007 111.584 0.00011
TM3 231.532 0.008 187.422 0.00019

The basis for the comparison of the fixed-point and TCM approaches was the exper-
imental data2 for the calibration of PRTs in a National Metrology Institute (NMI) and
specifically that related to the in-house calibration given in Tables 1 and 2.

In-house calibration standard uncertainties were obtained by considering all
relevant contributions to the uncertainty budget, namely, the calibration uncertainty
of the reference PRT, PRT stability and self-heating, bridge uncertainties (resolution,
linearity, connectors, etc.), standard resistor uncertainties (calibration, temperature
influence), oil bath and ethanol/water mixture, bath stability and uniformity.

5 Measurement Uncertainty Evaluation Using a Monte Carlo Method

As mentioned earlier, a major aspect of the uncertainty evaluation for the two-stage
process, using MCM for the fixed-point method and the TCM, is the calculation of
the calibration coefficients a and b (Eq. 2), and thus it was decided to focus this inves-
tigation on that aspect of the uncertainty evaluation. We outline how to carry out the
evaluation to assess the uncertainty related to the estimated temperature T , which is
relatively straightforward. In each case, a sequence of draws was made from Gaussian
PDFs assigned to the input quantities T0, T1, T2, R0, R1, and R2; Gaussian PDFs rather
than scaled and shifted t-distributions were used since the available experimental data
are based on a large effective degrees of freedom due to extensive study and knowl-
edge of the measurement system. For the fixed-point method, the expectations of these
quantities were taken as the temperatures and measured resistances in Table 1 and the
standard deviations as the associated standard uncertainties given there. For the TCM,
the data in Table 2 were correspondingly used. For each method, a sequence of random
draws from each of these PDFs was made, and for each set of values in the sequence

2 Temperatures as requested by the customer. In comparison with the ITS-90 procedure, this imposes a
non-standard sub-range calibration. However, the pseudo-ITS-90 and TCM approaches are based on similar
substitutions for T1, so their comparison should not be invalidated by this fact.
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the pair of values of a and b formed. The draws were based on the Mersenne Twister
uniform random number generator and the Box-Muller transformation.

Figure 3 illustrates how MCM is applied in this particular evaluation process,
namely, (1) the generation of random number sequences (PRNG), (2) their trans-
formation to other sequences with Gaussian PDFs for the two types of input quantities

(temperature values Ti and electrical resistance values Ri , u
(

T̂i

)
and u

(
R̂i

)
being

the standard uncertainties associated with estimates T̂i and R̂i ), (3) the combination
of the modified sequences according to the generic mathematical model [Y] = f [X],
and (4) the treatment of the model values (output sequences), yielding PDFs for the
coefficients a and b, and hence estimates â and b̂ of a and b, and their associated
standard uncertainties u(â) and u(b̂).

The output PDFs for a and b for the fixed-point method are shown in Figs. 4
and 5. Although they are close to Gaussian in form, no distributional assumption
is made in the use of MCM. In a similar way, the PDFs for the coefficients for the

MCM

Input sequencesPRNG

[Y]=   [X]f

N (               )T, u  (T)

N (               )R, u  (R)

P (              )a, u  (a)

P (              )b, u  (b)

Output sequences

2

2

2

2

Fig. 3 Propagation of distributions using MCM

Fig. 4 PDF for coefficient a for the fixed-point method
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Fig. 5 PDF for coefficient b for the fixed-point method

TCM data are obtained. They are very similar in appearance to the PDFs for a and b
for the fixed-point method.

The complete set of drawn pairs of coefficients (a, b) is shown in Fig. 6 for the
fixed-point method results. The coefficients are clearly strongly correlated (correla-
tion coefficients were −0.987 for the fixed-point method and −0.993 for TCM), which
indicates the importance of accounting for that effect in the second stage, namely, the
use of the calibrated PRT for subsequent measurement. To apply MCM to the second
stage requires the re-use of the sequence of drawn pairs of coefficients (a, b). For each
such pair, and the corresponding draws for T0, R0, and R, the corresponding value of
the required temperature T is determined.3

6 Comparison of Results and Validation of TCM Procedure

The comparison of the results obtained is based on the evaluation of the tempera-
ture deviation function (the difference between the fixed-point-based function and
the TCM function), presented in Fig. 7, where the electrical resistance is the input
quantity, allowing the ratio W (T ) = R(T )/R(273.16 K) to be evaluated, and, subse-
quently, the reference ratio Wr(T ) from Eq. 2, which is applied in the calculation of
the temperature using Eq. 4 in both cases (fixed point and TCM).

Based on this result, an acceptance criterion of 0.01◦C can be adopted, and a
contribution to the uncertainty budget considered based on this estimate.

3 It would be invalid to use the sequence of drawn pairs of coefficients (a, b) to form an uncertainty
matrix associated with the estimates of these coefficients, and to sample from the multivariate Gaussian
distribution having expectation equal to the vector defined by these two estimates and covariance equal to
this uncertainty matrix. Doing so would be counter to the concept of the propagation of distributions in
which no assumption is made about the form of “output” PDFs.
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Fig. 6 Monte Carlo “draws” of the values of a and b for the fixed-point method
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Fig. 7 Deviation in temperature between fixed-point-based and TCM curves

7 Conclusions

The first of the objectives given in the introduction was the validation of the tem-
perature comparison methodology to perform in-house calibration. According to the
results obtained, expressed for the case treated, the observed deviation in the tempera-
tures provided by the two methodologies is less than 0.01◦C. This degree of agreement
is acceptable for many of the practical needs of industry and calibration and testing
laboratories.

Regarding the objective of considering the use of MCM as a tool to perform this
type of uncertainty evaluation, the main advantage is the avoidance of the need to
apply the chain rule of differential calculus to evaluate the somewhat complicated
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partial derivatives of the models involved [3,4]. A further advantage would arise if the
non-linearity of the model(s) considered is such that the conditions for valid applica-
tion of the GUM uncertainty framework do not reasonably apply. That aspect requires
further study.

This work shows that it is possible to obtain, straightforwardly using MCM, the
joint PDF for the coefficients associated with the ITS-90 deviation functions for the
temperature interval considered and the comparison methodology used. This joint
PDF is represented by the sequence of “draws” of the values of these coefficients. It
also shows how information is used in the evaluation of uncertainty in the following
stage concerning the use of a calibrated PRT.

Further studies will be carried out to establish a comparison between the GUM
uncertainty framework and MCM in the implementation of single and two-stage
approaches so that a better knowledge of the difficulties and advantages related to
both methods can be acquired. Taking into account the correlation existing among
input variables is also intended in a further investigation. Even though, for the rea-
sons stated, not all the conditions for the valid application of the GUM uncertainty
framework apply, it is possible that, for the particular problem of concern, the results
of the two uncertainty evaluations agree sufficiently for practical purposes. Although
it would be difficult to draw general conclusions in this regard, it is expected that by
examining a number of particular cases, some statements could be made that would
apply to those cases and to cases sufficiently similar to them. Conversely, the result
of such a study might indicate that MCM should perhaps be used for such problems
to obtain uncertainty evaluations of greater reliability.

With this work, greater dissemination of metrology knowledge might be achieved,
since the type of problems handled relate to a large user community of thermometry
applications.
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